To The Moon and Back
are Internet delays really that large?

Chiara Chirichella
Dario Rossi

dario.rossi@enst.fr
http://www.enst.fr/~drossi

FP7 IP project
(grant no. 318627)
Agenda

• Background
 – Bufferbloat, or the Internet is broken (again) [PAM’10, IMC’10, CACM’12, IMC’12, TMA’13, CCR’13]
 – Measuring Bufferbloat by exploiting LEDBAT [PAM’13]

• Hybrid Internet measurement campaign
 – Quantify bufferbloat (caveat of coupling bias!)
 – Root cause analysis
Background: Bufferbloat

- RTT Delay between two Internet hosts?
Background: Bufferbloat

- RTT Delay between two closeby Internet hosts?

Bufferbloat!
RTT may grow to several seconds!
Nasty impact on interactive Web, VoIP, gaming traffic, etc.

Source: [PAM’10]
Background: Bufferbloat

• Old issue, new interest
 – Previously work on buffers focused on the network core, where due to high speed, bufferbloat is limited --but situation is different at the network edge!
 – Small buffers not enough: cause of inefficiency, not fit for varying capacity (eg. WiFi) [TMA’13]
 – BitTorrent abandoned TCP in favor of LEDBAT due to this problem [PAM’10]
 – Moore law drove down memory costs, exhacerbate bufferbloat [CACM’12]

• Measurement work
 – Maximum bufferbloat via backlogged transfers [IMC’10],
 – Active testbed on 3/4G via ICMP RTT measurement [IMC’12]
 – Passive observation of TCP RTT variation on campus [CCR’13]
Background: LEDBAT

TCP

Detect congestion by losses
- Increment the congestion window \((cwnd)\) by one packet per RTT
- Halve \(cwnd\) on loss events

Consequences
- The buffer always fills up
- High delay for interactive apps
- Users need to prioritize traffic!

LEDBAT

Infer via delay measurement
- Senders measure minimum delay
- Queuing delay = difference wr.t. min
- React with linear controller

Aim
- At most TARGET ms of delay
- Lower priority than TCP
- Do not harm interactive application
- Avoid self-induced congestion

TCP Diagram

- \(cwnd\) increases with losses
- Time

LEDBAT Diagram

- \(cwnd\) approaches TARGET
- Time
Background: LEDBAT

- Exploiting LEDBAT to infer Bufferbloat [PAM’13]
 - Passive traffic observation
 - Exploit LEDBAT headers (UDP header)
 - Perform same state update sender would do
 - Queuing delay = difference with respect to minimum
 - Gauge remote peer buffer even with hidden B->C traffic
 - Very accurate vs ground truth
 - Kernel-level queue
 - Application-level RTT
Internet campaign

Hybrid methodology
• actively join torrents (M)
• passively analyze remote peers traffic (R1.. RN)

Dataset
• Nearly 100 experiments, >10 torrents (Book, Games, Software, Video, ...), 3 vantage points (FR, IT, AU)
• Available at

http://www.enst.fr/~drossi/dataset/bufferbloat-internet
Internet campaign

• Quantify bufferbloat in the wild Internet
 – Caveat: coupled sampling

• Identify root causes
 – Access type (reverse DNS)
 – Operating system (TTL fingerprint)
 – BitTorrent client (BT handshake)
Quantify bufferbloat

- Avoid bias due to coupled sampling
 - Bufferbloat samples = LEDBAT window,
 - LEDBAT window shrinks when queuing delay increases

\[cwnd_{i+1} = \max(1, cwnd_i + \gamma(\tau - q_i)/\tau cwnd_i) \]

- Problem
 - Risk of bufferbloat understimation: few samples when the queuing delay is large
 - Risk of target delay overestimation: LEDBAT stabilizes around target delay if alone in the bottleneck

- Solution
 - Batch samples in short fixed-size windows \(t \in [t_i, t_0+W] \)
 - \(Q_i = E[q_i] \) over all packets in the window
Quantify bufferbloat

- Coupling example

Interfering TCP traffic
- Window shrinks
- Underestimate queue

LEDBAT alone
- Full window
- Overestimate target

Application limited
- Few samples, but low queuing

Transient periods
Quantify bufferbloat

- Windowed estimates (Q_i) correct per-packet (q_i) bias
- Interactivity threshold (100ms) exceeded 10% of the times
- Bufferbloat (>1s) rare, but experienced by 1% of peers
Root cause analysis

To protect herself from bufferbloat, user can:

• Change operator/access type (AT)
 – Better modem, smaller buffers, contracts with higher capacity, ...

• Change Operating System (OS)
 – Congestion control flavor of TCP interacting traffic, timestamp precision affect LEDBAT behavior, ...

• Change BitTorrent Client (BC)
 – L7 application settings: # peers, connection management policy, ...
Root cause analysis

Methodology

• Breakdown peer statistics per AT, OS and BC classes
• Quantify difference per classes
• Extract samples with equal size to avoid class imbalance
• Compare to random subset for score baselines

Metrics

• Kullback-Leibler (KL) divergence
• Hellinger Distance (HD)

Results

• Access type biggest role
• OS and BC non negligeable either

(caveat: AT, OS and BC can be correlated; e.g., all Windows peer may use uTorrent)
Conclusions

• Findings
 – Bufferbloat rare but possible (1% of peers, maybe due to concurrent BitTorrent TCP transfer to legacy peers)
 – Bufferbloat primarily affected by peer access type
 – Operating system (~TCP flavors) and application (~connection management) also correlates with queuing delay magnitude

• Limits
 – Limited to hosts running BitTorrent
 – Possibly over-estimate bufferbloat (BitTorrent)
 – Possibly spatially and temporally limited view (hosts of BT swarms, when peers use BT)
 – Data intensive (RX data from remote hosts)

• Ongoing
 – Lightweight active methodology
 – Purely passive campaign
References

[this talk] C. Chirichella, D. Rossi, To the Moon and Back: are Internet delay really that large? In IEEE INFOCOM Workshop on Traffic Measurement and Analysis (TMA'13), 2013.

Further informations on LEDBAT and bufferbloat:
http://www.enst.fr/~drossi/ledbat